Preanalytical, analytical, and biological variation of blood plasma submicron particle levels measured with nanoparticle tracking analysis and tunable resistive pulse sensing.
نویسندگان
چکیده
BACKGROUND Nanoparticle tracking analysis (NTA) and tunable resistive pulse sensing (TRPS) enable measurement of extracellular vesicles (EVs) in blood plasma but also measure other particles present in plasma. Complete isolation of EVs from similarly sized particles with full EV recovery is currently not possible due to limitations in existing isolation techniques. AIM This study aimed to evaluate preanalytical, analytical, and biological variation of particle measurements with NTA and TRPS on blood plasma. METHODS Blood from 20 healthy subjects was sampled in the fasting and postprandial state. Platelet free plasma (PFP) was analyzed immediately and after a freeze-thaw cycle. Additionally, the effect of prandial state and a freeze-thaw cycle on EV-enriched particle fractions obtained via size-exclusion chromatography (SEC) was examined. RESULTS We observed analytical linearity in the range of 1.0-10.0 × 10(8) particles/mL for NTA and 1.0 × 10(8)-1.8 × 10(9) particles/mL for TRPS. The analytical variation was generally below 10%. A considerable intra- and inter-individual variation was demonstrated with estimated reference intervals of 1.4 × 10(11)-1.2 × 10(12) particles/mL for NTA and 1.8 × 10(8)-1.6 × 10(9) particles/mL for TRPS. Food intake and to a lesser extent a freeze-thaw cycle affected particle populations in PFP and, similarly, in EV-enriched fractions. CONCLUSION In this study NTA and TRPS enabled acceptably precise concentration and size measurement of submicron particles in PFP. An appreciable intra- and inter-individual biological variation was observed. In studies on particle populations in PFP or EV-enriched fractions, we recommend analysis of fresh, fasting samples.
منابع مشابه
Nanoparticle ζ-potential measurements using tunable resistive pulse sensing with variable pressure.
Modern resistive pulse sensing techniques can be used to measure nanoparticle electrophoretic mobility, and hence ζ-potential. In contrast to conventional light scattering methods, resistive pulse sensing produces particle-by-particle data. We have used tunable resistive pulse sensing (TRPS) to compare methods for measuring the ζ-potential of carboxylated polystyrene nanoparticles. The five par...
متن کاملCharacterisation of the protein corona using tunable resistive pulse sensing: determining the change and distribution of a particle’s surface charge
The zeta potential of the protein corona around carboxyl particles has been measured using tunable resistive pulse sensing (TRPS). A simple and rapid assay for characterising zeta potentials within buffer, serum and plasma is presented monitoring the change, magnitude and distribution of proteins on the particle surface. First, we measure the change in zeta potential of carboxyl-functionalised ...
متن کاملLipoprotein-apheresis reduces circulating microparticles in individuals with familial hypercholesterolemia[S]
Lipoprotein-apheresis (apheresis) removes LDL-cholesterol in patients with severe dyslipidemia. However, reduction is transient, indicating that the long-term cardiovascular benefits of apheresis may not solely be due to LDL removal. Microparticles (MPs) are submicron vesicles released from the plasma membrane of cells. MPs, particularly platelet-derived MPs, are increasingly being linked to th...
متن کاملA comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions.
The particle size distribution (PSD) of a polydisperse or multimodal system can often be difficult to obtain due to the inherent limitations in established measurement techniques. For this reason, the resolution, accuracy and precision of three new and one established, commercially available and fundamentally different particle size analysis platforms were compared by measuring both individual ...
متن کاملApplications of tunable resistive pulse sensing.
Tunable resistive pulse sensing (TRPS) is an experimental technique that has been used to study and characterise colloidal particles ranging from approximately 50 nm in diameter up to the size of cells. The primary aim of this Review is to provide a guide to the characteristics and roles of TRPS in recent applied research. Relevant studies reflect both the maturation of the technique and the gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Scandinavian journal of clinical and laboratory investigation
دوره 76 5 شماره
صفحات -
تاریخ انتشار 2016